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CONSTRUCTING AN ANALYTICAL SOLUTION FOR LAMB WAVES

USING THE COSSERAT CONTINUUM APPROACH

UDC 534.22.094.1M. A. Kulseh, V. P. Matveenko, and I. N. Shardakov

The problem of propagation of a Lamb elastic wave in a thin plate is considered using the Cosserat
continuum model. The deformed state is characterized by independent displacement and rotation
vectors. Solutions of the equations of motion are sought in the form of wave packets specified by a
Fourier spectrum of an arbitrary shape for three components of the displacement vector and three
components of the rotation vector which depend on time, depth, and the longitudinal coordinate. The
initial system of equations is split into two systems, one of which describes a Lamb wave and the
second corresponds to a transverse wave whose amplitude depends on depth. Analytical solutions
in displacements are obtained for the waves of both types. Unlike the solution for Lamb waves, the
solution obtained for the transverse wave has no analogs in classical elasticity theory. The solution
for the transverse wave is compared with the solution for the Lamb wave.

Key words: Lamb wave, dispersion, Cosserat medium, analytical solutions.

Introduction. In the present paper, elastic Lamb waves work are considered using the Cosserat continuum
model. A Lamb wave is a normal wave in an elastic wave guide and propagates in thin plates (or films) whose both
surfaces are free of loads and whose thickness is of the order of the elastic-wave length. In this case, the plate acts
as a wave guide and the displacement vector in the wave has both longitudinal and transverse components, the
transverse component being normal to the plate surface.

Since Lamb waves should satisfy not only the elasticity equations but also the boundary conditions on the
plate surface, the pattern of motion in these wave and their properties are more complex than those of waves
propagating in unbounded solid bodies. This type of waves has been studied well for classical elastic media [1–3].

Lamb waves have found extensive application. In particular, they are used for the overall undestructive
control of sheet materials and structures and in signal processing systems (dispersion delay lines). Therefore, in
view of the advent of new materials and, accordingly, new theories for their description, an important problem is to
extend the well-known classical solutions describing Lamb wave propagation to new models of continuous media.
In the present paper, the solution for Lamb waves is extended to the Cosserat elastic linear model.

In the Cosserat continuum theory [1], deformation is described not only by the displacement vector u but
also kinematically by the independent vector ω, which characterizes small rotations of particles. In this theory,
the stress tensors σ̃ and moment stress tensors µ̃ are asymmetric. The dynamic behavior of the elastic isotropic
medium ignoring temperature effects is determined by eight constants: two Lamé constants, four elastic constants
describing microstructure, density, and a parameter responsible for the measure of inertia of the medium under
rotation (density of the moment of inertia). It is necessary to note that insufficient information on the values of
these constants for real structural materials is a major deterrent in the development and application of this theory
in practice.

The Cosserat continuum theory predicts a different behavior of waves compared to classical elasticity theory.
First, it predicts dispersion for Rayleigh elastic surface waves [4–6] whereas in classical elasticity theory, Rayleigh
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waves do not exhibit dispersion. Second, for the Cosserat model, surface transverse waves propagate with horizontal
polarization. In classical elastic theory, the existence of a Love wave as a surface wave is due to the presence of
a layer in half-space, and as the thickness of the layer tends to zero, the Love wave becomes a volumetric wave.
Kulesh et al. [7] showed that for a Cosserat medium, a horizontally polarized, transverse wave which damps with
depth also exists in the absence of a plane layer.

The aforesaid suggests that the differences between Love waves and the classical case are also significant.
In [5], a micropolar analog of the classical Lamb dispersion equation is derived and dispersion relations for several
wave modes are given in comparison with the classical case. It is shown that in addition to the generalization of
the solutions existing in the Rayleigh–Lamb theory, the Cosserat theory contains a solution that has no analog in
the classical case.

In the present work, one more solution is obtained which also has no analogs in classical elasticity theory.
This solution describes a wave propagating in a plate with one transverse component of the displacement vector
and two components of the rotation vector. This wave has an even larger number of modes than a Lamb wave; all
these modes exhibit dispersion, and the displacements for all modes depend on depth. Solutions of the equations
of motion are obtained for the case of a nonmonochromatic wave and describe the propagation of wave packets
specified by a Fourier spectrum of arbitrary shape.

In this paper, we give a solution for the displacement vector, the rotation vector, and the dispersion equation
and its numerical solutions for a certain hypothetical set of material parameters.

1. Formulation of the Problem. The basic relations for an elastic Cosserat medium are given by [1]:
— the equations of motion

∇ · σ̃ + X = ρü, σ̃t : Ẽ + ∇ · µ̃ + Y = jω̈; (1.1)

— the geometrical relations

γ̃ = ∇u − Ẽ · ω, χ̃ = ∇ω; (1.2)

— the physical equations

σ̃ = 2µγ̃(S) + 2αγ̃(A) + λI1(γ̃)ẽ, µ̃ = 2γχ̃(S) + 2εχ̃(A) + βI1(χ̃)ẽ. (1.3)

In view of relations (1.1)–(1.3), the equations of motion for the displacement vector u and ω and the rotation
vector are written as

(λ + 2µ) graddiv u − (µ + α) rot rotu + 2α rotω + X = ρü,

(β + 2γ) graddiv ω − (γ + ε) rot rotω + 2α rotu − 4αω + Y = jω̈.
(1.4)

In (1.1)–(1.4), X is the specific density vector of the mass forces, Y is the specific density vector of the mass
moments, u is the displacement vector, ω is the rotation vector, γ̃ and χ̃ are the strain and bending-torsion tensors,
σ̃ and µ̃ are the stress and moment stress tensors, µ and λ are Lamé constants, α, β, γ, and ε are the physical
constants of the material of the elastic Cosserat medium, ρ is the density, j is the density of the moment of inertia
(a measure of the inertia of the medium under rotation), Ẽ is the third-rank Levi-Civita tensor, ( · )(S) is the
symmetrizing operation, ( · )(A) is the alternation operation, ∇( · ) is the nabla-operator, I1( · ) the first invariant of
the tensor, and ẽ is the unit tensor [8.] In contrast to the classical theory, the tensors γ̃ and σ̃ are asymmetric.

We consider an elastic layer of thickness 2H enclosed between the planes z = ±H . The Cartesian coordinates
x and y are directed along the surface, and the z axis is perpendicular to it. The wave is assumed to propagate in
the x direction.

In the case of Lamb waves, the boundary conditions define the absence of forces and moments on both
surfaces of the layer:

σzx|z=±H = 0, σzy |z=±H = 0, σzz |z=±H = 0,

µzx|z=±H = 0, µzy|z=±H = 0, µzz|z=±H = 0.

2. Constructing the General Solution. Unlike in the well-known papers [2–6], which deal only with
monochromatic waves, following the procedure described in [9, 10], we write the general solution of the problem in
the form of Fourier integrals with respect to all component of the displacement vector un(x, z, t) and the rotation
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vector ωn(x, z, t); this corresponds to the representation of the solution in the form of a wave packet of arbitrary
form which is bounded in the time and Fourier spaces:

un(x, z, t) =

∞∫

−∞
Un(z) ei(kx+ft) Ŝ0(f) df,

ωn(x, z, t) =

∞∫

−∞
Wn(z) ei(kx+ft) Ŝ0(f) df.

(2.1)

Here i =
√−1 is imaginary unit, k is the wavenumber, f is the circular frequency (related to the physical frequency

p in hertz by the formula f = 2πp), t is time, Un(z) and Wn(z) are peak functions that depend on depth, and
Ŝ0(f) is a complex spectral function that corresponds to the Fourier spectrum of the source signal and defines the
shape of the wave packet. Here only the material parts of the displacement vector and rotation components have
the physical meaning.

Representation (2.1) describes the wave propagating in the negative x direction. The solution for the wave
propagating in the positive x direction is obtained similarly by changing the sign of the term kx.

In this case, the fulfillment of the continuous Fourier transform of the equations of motion (1.4) and repre-
sentations (2.1) is justified. We use direct and Fourier transforms in the form [8]

Ŝ(f) =

∞∫

−∞
S(t) e−ift dt, S(t) =

1
2π

∞∫

−∞
Ŝ(f) eift df,

where Ŝ(f) is a complex function of the Fourier image of the function S(t) ∈ L2(R), which is determined on the
entire real axis and possesses a finite energetic norm:

∞∫

−∞
|S(t)|2 dt < ∞.

This implies the following system of equations for the required components of the displacement and rotation vectors
(it is assumed that mass forces and moments are absent):

(λ + 2µ) graddiv û − (µ + α) rot rot û + 2α rot ω̂ + ρf2û = 0,

(β + 2γ) graddiv ω̂ − (γ + ε) rot rot ω̂ + 2α rot û − (4α − jf2)ω̂ = 0.
(2.2)

The Fourier transform of representation (2.1) is given by

û = {Ux(z), Uy(z), Uz(z)}t eikx Ŝ0(f),

ω̂ = {Wx(z), Wy(z), Wz(z)}t eikx Ŝ0(f).
(2.3)

For the convenience of presentation, we make all quantities dimensionless by using the characteristic size X0

and the characteristic frequency f0. In addition, we introduce four dimensionless quantities, one of which depends
on the characteristic size:

A = X0

√
µ

B(γ + ε)
, B =

α + µ

α
, C =

γ − ε

γ + ε
, F =

B − 1
A2B

.

Dynamic effects are taken into account by using the dimensionless parameters

C2
1 =

λ + 2µ

ρX2
0f2

0

, C2
2 =

µ

ρX2
0f2

0

, C2
3 =

B

B − 1
C2

2 , C2
4 =

γ + ε

jX2
0f2

0

, C2
5 =

β + 2γ

jX2
0f2

0

.

Here C1 and C2 are analogs of the velocities of the longitudinal and transverse waves and C4 and C5 are two
additional independent parameters due to the presence of the new material constants of the Cosserat medium; the
parameter C3 is introduced to simplify the presentation.

Applying the method described in detail in [11] to Eqs. (2.2) and (2.3), we obtain the general dimensionless
solution of the equations of motion (1.4). It should be noted that unlike in the case of surface waves, a solution for
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which is considered in [11], in the given case, it is necessary to retain all particular solutions and not only those
that damp with depth. Thus, the general solution in displacements is written as

ux(x, z, t) =

∞∫

−∞
{D1ik e−ν1z +D2ν2 e−ν2z +D3ν3 e−ν3z +D4ik eν1z

− D5ν2 eν2z −D6ν3 eν3z} ei(kx+ft) Ŝ0(f) df,

uy(x, z, t) =
F

2

∞∫

−∞

{
E2

(
Am − f2

C2
4

+
4
F

)
e−ξ2z +E3

(
Ap − f2

C2
4

+
4
F

)
e−ξ3z

+ E5

(
Am − f2

C2
4

+
4
F

)
eξ2z +E6

(
Ap − f2

C2
4

+
4
F

)
eξ3z

}
ei(kx+ft) Ŝ0(f) df,

uz(x, z, t) =

∞∫

−∞
{−D1ν1 e−ν1z +D2ik e−ν2z +D3ik e−ν3z +D4ν1 eν1z

+ D5ik eν2z +D6ik eν3z} ei(kx+ft) Ŝ0(f) df,

ωx(x, z, t) =

∞∫

−∞
{E1ik e−ξ1z +E2ξ2 e−ξ2z +E3ξ3 e−ξ3z +E4ik eξ1z

(2.4)

− E5ξ2 eξ2z −E6ξ3 eξ3z} ei(kx+ft) Ŝ0(f) df,

ωy(x, z, t) =
B

2

∞∫

−∞

{
D2

(
Am − f2

C2
3

)
e−ν2z +D3

(
Ap − f2

C2
3

)
e−ν3z

+ D5

(
Am − f2

C2
3

)
eν2z +D6

(
Ap − f2

C2
3

)
eν3z

}
ei(kx+ft) Ŝ0(f) df,

ωz(x, z, t) =

∞∫

−∞
{−E1ξ1 e−ξ1z +E2ik e−ξ2z +E3ik e−ξ3z +E4ξ1 eξ1z

+ E5ik eξ2z +E6ik eξ3z} ei(kx+ft) Ŝ0(f) df,

where the constants Di and Ei (i = 1, . . . , 6) are determined from the boundary conditions; the exponents νm

and ξm (m = 1, . . . , 3) are defined by the relations

ν1 =

√
k2 − f2

C2
1

, ξ1 =

√
k2 − f2

C2
5

+
4C2

4

FC2
5

, ν2 = ξ2 =
√

k2 − Am, ν3 = ξ3 =
√

k2 − Ap,

Ap,m =
C2

3 + C2
4

2C2
3C2

4

f2 − 2A2 ±
√

(C2
3 − C2

4 )2

4C4
3C4

4

f4 − 2A2(C2
2C2

3 − 2C2
3C2

4 + C2
2C2

4 )
C2

2C2
3C2

4

f2 + 4A4.

3. Rayleigh and Lamb Waves. In the particular case, relations (2.4) adequately describe the well-studied
solutions for Rayleigh surface waves in elastic half-space. The given solutions are damping with increasing depth,
i.e., the constants at the positive exponents in (2.4) vanish: D4 = D5 = D6 = 0 and E4 = E5 = E6 = 0. The
boundary conditions define the absence of forces and moments on the surface of the half-space (z = 0), and in
dimensionless variables, they are written as

σzx|z=0 = 0, σzy|z=0 = 0, σzz |z=0 = 0,

µzx|z=0 = 0, µzy|z=0 = 0, µzz |z=0 = 0.
(3.1)
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Substitution of solution (2.4) into boundary conditions (3.1) yields two homogeneous systems of algebraic
equations, and from the resolvability condition for these equations, we obtain the following dispersion equations for
the two types of waves:

1) for Rayleigh waves with components ux, uz, and ωy [11],

det (Mr(ν1, ν2, ν3)) = 0; (3.2)

2) for transverse surface waves with components uy, ωx, and ωz [7],

det (Mt(ξ1, ξ2, ξ3)) = 0. (3.3)

In Eqs. (3.2) and (3.3), the matrices Mr(p1, p2, p3) and Mt(p1, p2, p3) are defined by the expressions

Mr(p1, p2, p3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2k2 − f2

C2
2

−2ikp2 −2ikp3

2ikp1 2k2 − f2

C2
2

2k2 − f2

C2
2

0 p2

(
Am − f2

C2
3

)
p3

(
Ap − f2

C2
3

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Mt(p1, p2, p3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2ik

1 − B
p2

(
2 +

AmC2
4 − f2

2A2C2
4

)
p3

(
2 +

ApC
2
4 − f2

2A2C2
4

)

ikp1(1 + C) p2
2 + k2C p2

3 + k2C

(C2
5

C2
4

− C − 1
)
k2 − p2

1

C2
5

C2
4

2ikp2(1 + C) 2ikp3(1 + C)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

From this it follows that in half-space whose dynamic behavior is described by the Cosserat medium model, in
addition to a Rayleigh surface elliptic wave, a surface wave can exist which has one transverse component parallel
to the boundary surface and perpendicular to the wave propagation direction. Therefore, this wave can be compared
to a Love wave although it is known that in classical elasticity theory, the existence of a Love wave as a surface
elastic wave is determined by the presence of a layer in half-space. As the thickness of the layer tends to zero, the
Love wave becomes a volumetric wave. Thus, in a Cosserat medium, a qualitatively new wave mode is found which
has no analogs in classical elasticity theory.

In constructing the solution describing Lamb wave propagation, we use the layer thickness X0 = H as the
characteristic size. Then, the dimensionless boundary conditions become

σzx|z=±1 = 0, σzy|z=±1 = 0, σzz |z=±1 = 0,

µzx|z=±1 = 0, µzy|z=±1 = 0, µzz |z=±1 = 0.
(3.4)

As above, substitution of solution (2.4) into boundary conditions (3.4) yields two homogeneous systems of
algebraic equations, and the resolvability condition for these systems yields the following dispersion equations for
the two types of waves:

1) for Lamb waves with components ux, uz, and ωy,

det
[

Mr(ν1, ν2, ν3)L(ν1, ν2, ν3) Mr(−ν1,−ν2,−ν3)L(−ν1,−ν2,−ν3)
Mr(ν1, ν2, ν3)L(−ν1,−ν2,−ν3) Mr(−ν1,−ν2,−ν3)L(ν1, ν2, ν3)

]
= 0; (3.5)

2) for transverse waves with components uy, ωx, and ωz,

det
[

Mt(ξ1, ξ2, ξ3)L(ξ1, ξ2, ξ3) Mt(−ξ1,−ξ2,−ξ3)L(−ξ1,−ξ2,−ξ3)
Mt(ξ1, ξ2, ξ3)L(−ξ1,−ξ2,−ξ3) Mt(−ξ1,−ξ2,−ξ3)L(ξ1, ξ2, ξ3)

]
= 0. (3.6)

In Eqs. (3.5) and (3.6), L(p1, p2, p3) is a diagonal matrix of the form

L(p1, p2, p3) =

⎡
⎣ e−p1 0 0

0 e−p2 0
0 0 e−p3

⎤
⎦ .
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Fig. 1. Wavenumber (a) and normalized phase velocity (b) versus frequency for Lamb waves in a
classical elastic medium.
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Fig. 2. Wavenumber (a) and normalized phase velocity (b) versus frequency for Lamb wave in a Cosserat medium.

This solution suggests that in a layer whose dynamic behavior is described by the Cosserat medium model, in
addition to a Lamb wave there is a fundamentally new wave mode which has one transverse displacement component
and whose amplitude varies with depth. This wave mode is absent in classical elasticity theory.

4. Solution of the Dispersion Equations. The solutions of Eqs. (3.2) and (3.3) are analyzed in [7]. The
dispersion curves which are solutions of Eqs. (3.5) and (3.6) are given below. For numerical analysis, we use the
following values of the material parameters: λ = 2.8 ·1010 N/m2, µ = 4 ·109 N/m2, ρ = 105 kg/m3, α = 2 ·109 N/m2,
β = 108 N, γ = 1.936 · 108 N, ε = 3.046 · 109 N, and j = 104 kg/m.

Curves of wavenumbers and normalized phase velocities Cn(f) = Cp(f)/C2 = f/(C2k(f)) for a Lamb waves
in a classical elastic medium [2] are shown in Fig. 1. (In Figs. 1–3, the dashed curves correspond to longitudinal
and transverse waves.) Similar dependences for a Cosserat medium which correspond to solution (3.5) are given in
Fig. 2. Thus, asymmetric theory predicts new wave modes for Lamb wave propagation in a plate. A mathematical
foundation for this is given in [5]. The data in Fig. 3 correspond to the solution of the dispersion equation (3.6)
for a transverse wave with components uy, ωx, and ωz which exhibits dispersion, has many wave modes, and whose
amplitude depends on depth.

Conclusions. The finding of the present work is as follows. In a thin plate whose dynamic behavior
is described by the Cosserat medium model, in addition to a Lamb wave, there may be a wave which has one
transverse component parallel to the boundary surface and perpendicular to the wave propagation direction. Thus,
in a Cosserat medium, a qualitatively new wave mode is found that has no analogs in classical elasticity theory.
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Fig. 3. Wavenumber (a) and normalized phase velocity (b) versus frequency for a transverse wave
in a Cosserat medium.

The results of this work may be useful in preparing, carrying out, and interpreting dynamic (wave) exper-
iments designed to determine the role of asymmetric elasticity theory in continuum mechanics and to identify the
material parameters of a Cosserat medium.
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Research and Higher Education” (Grant No. Y2-0-09-04) and the Russian Foundation for Basic Research (Grant
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